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Transparently manipulating spin–orbit qubit
via exact degenerate ground states∗
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By investigating a harmonically confined and periodically driven particle system with spin–orbit coupling (SOC) and
a specific controlled parameter, we demonstrate an exactly solvable two-level model with a complete set of spin-motion
entangled Schrödinger kitten (or cat) states. In the undriven case, application of a modulation resonance results in the exact
stationary states. We show a decoherence-averse effect of SOC and implement a transparent coherent control by exchanging
positions of the probability-density wavepackets to create transitions between the different degenerate ground states. The
expected energy consisting of quantum and continuous parts is derived, and the energy deviations caused by the exchange
operations are much less than the quantum gap. The results could be directly extended to a weakly coupled single-particle
chain for transparently encoding spin–orbit qubits via the robust spin-motion entangled degenerate ground states.
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1. Introduction
The spin–orbit coupling (SOC) can hybridize spin-up and

spin-down states to form a spin–orbit qubit.[1–5] The orbital
part of the spin-motion entangled states[6–8] can be used for
qubit manipulation. Coherent manipulation of electron spin
is of critical importance for quantum computing and infor-
mation processing with spins.[9] The previous investigation
has paved the way for manipulating electron spins in an ar-
ray of quantum dots individually.[10–12] Recently, realization
of the laser-induced SOC[13,14] in the low-dimensional cold
atom systems opens a broad avenue for studying the many-
body quantum dynamics.[15–31] The atomic SOC with equal
Rashba and Dresselhaus strengths[13,18] is equivalent to that
of an electronic system with equal contribution from Rashba
and Dresselhaus SOC.[21] A method of implementing arbi-
trary forms of SOC in a neutral particle system has also been
reported.[32] Particularly, the Rashba and Dresselhaus terms
can be transformed into each other under a spin rotation[33,34]

and also can be tunable by using a periodic field.[34–36]

A spin–orbit coupled neutral[13,37] or charged[5,38] two-
level particle in an external field can be governed by an ef-
fective two-level model. The single-particle model also can
be derived from a many-particle two-level system,[39–42] by
using the Feshbach-resonance technique to make zero inter-
particle interaction. Analytically solvable driven two-level
quantum systems without SOC have continuously attracted

considerable attention in diverse areas of physics,[43–52] since
exact analytical solutions are invaluable in the contexts of
qubit control[49] and can render the control strategies more
transparent.[53] The presence of SOC increases the difficult
for searching the solvability of the systems and leads the
corresponding exact solutions to remain extremely rare.[54,55]

Mathematically, a partially differential system allows a gen-
eral solution with arbitrary functions and a complete solution
with arbitrary constants. These arbitrary functions and con-
stants are adjusted and determined by the initial and bound-
ary conditions. The general solution can describe all proper-
ties of the system and the complete solution can also describe
more physics than any particular solution can. In the previ-
ous work, we derived a set of generalized coherent states for
a harmonically trapped particle system without SOC,[56–58]

which just is a set of complete solutions describing a com-
plete set of Schrödinger kitten (or cat) states. As pointed out
in Ref. [59], “a Schrödinger kitten (cat) state is usually de-
fined as a quantum superposition of coherent states with small
(big) amplitudes, providing an essential tool for quantum in-
formation processing.” For an ion system, the similar spin-
motion entangled states have been experimentally prepared as
the Schrödinger’s cat state with two macroscopically separated
wavepackets of probability densities.[7,60]

In this paper, we consider a spin–orbit coupled and pe-
riodically driven neutral (or charged) particle confined in a
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harmonic trap. We define and manage the controlled Raman–
Zeeman angle (or the orientation of the static magnetic field) θ

to match the SOC-dependent phase φ = arctan αR
αD

with αR(D)

being the Rashba (Dresselhaus) SOC strength,[5] which is
called formally the SOC phase-locked condition. Under this
condition, we establish an exactly solvable two-level model
and construct a complete set of exact Schrödinger kitten states
with spin-motion entanglement, which contain some degener-
ate ground states with norms of motional states being a kind
of oscillating wavepackets. Further application of a modula-
tion resonance with the defined Raman–Zeeman (or magnetic
field) strength being modulated to fit the trap frequency leads
to the undriven stationary double packets. The decoherence-
averse effect of SOC and the coherent control of quantum
operations based on interchanges of the wavepackets are re-
vealed transparently, which shift the system between differ-
ent degenerate ground states. The expected energy consists of
a quantum part and a continuous one, and the energy devia-
tions caused by the exchange operations are much less than
the quantum gap such that the coherent operation is robust
against perturbations and interactions with the environment.
The exact results could be treated as the leading-order ones
to directly extend to a weakly coupled nanowire quantum-dot-
electron chain (or an array of neutral particles separated from
each other by different optical wells[61,62] with weak neigh-
boring coupling) for encoding the spin–orbit qubits.

2. A complete set of spin-motion entangled
Schrödinger kitten states
We consider a one-dimensional (1D) harmonically con-

fined and periodically driven[21,40] two-level particle with
Rashba–Dresselhaus coexisting SOC,[5,32,38,42] which is gov-
erned by the effective Hamiltonian[5]

H = H0 +αDσx px +αRσy px +
1
2

g0(σx cosθ +σy sinθ),

H0 = −1
2

∂ 2

∂x2 +
1
2

x2 + εxcos(Ω t). (1)

Here we have adopted the natural unit system with h̄ = m =

ω = 1, so that time, space, and energy are normalized in units
of ω−1, Lh =

√
h̄/(mω), and h̄ω with m and ω being the parti-

cle mass and trapped frequency. The px =−i∂/∂x denotes the
momentum operator, αR(D) is the Rashba (Dresselhaus) SOC
strength,[5,32,38,42] and σx(y) is the x(y) component of the Pauli
matrix. For a charged particle,[5] g0 is equal to geµBB with
ge being the gyromagnetic ratio,[33] µB is the Bohr magne-
ton, B and θ represent the strength and orientation of the static
magnetic field. For a neutral atom,[13,37] g0 cosθ and g0 sinθ

are, respectively, the Raman coupling strength and the tunable
detuning behaving as a Zeeman field.[21,32] Here, for conve-
nience, we have expressed the Raman and Zeeman parameters

in terms of two new ones g0 and θ without loss of generality,
which are defined as the Raman–Zeeman strength and angle,
respectively. Clearly, the zero Raman–Zeeman (or magnetic
field) angle means the zero detuning and the Raman coupling
strength equating g0 (or magnetic field being in x direction
with strength g0). The spin-dependent terms can be adjusted
by a spin rotation.[33,34] The driving parameters ε and Ω are
the amplitude and frequency of the ac field, and the related
linear potential can be produced by a periodic magnetic field
gradient for the neutral atom[63,64] or simply is an ac electric
potential for a charged particle.

Applying the usual state vector |ψ(t)〉= 1√
2
[|ψ+(t)〉| ↑〉

+|ψ−(t)〉|↓〉], the space-dependent state vector reads[7,26,27]

|ψ(x, t)〉= 〈x|ψ(t)〉= 1√
2

[
ψ+(x, t)|↑〉+ψ−(x, t)|↓〉

]
(2)

with ψ±(x, t) = 〈x|ψ±(t)〉 being the normalized motional

states entangling the corresponding spin states |↑〉=
(

1
0

)
and

|↓〉=
(

0
1

)
, respectively. Although |ψ±(t)〉may be expanded

in terms of a set of orthonormal basic kets with time-dependent
expansion coefficients,[6] here we will seek the exact com-
plete solutions ψ±(x, t). Therefore, the spin-motion entangle-
ment of Eq. (2) requires the linear independencies[26,27,58] of
ψ+(x, t) and ψ−(x, t). The probabilities of the particle being
in spin states | ↑〉 and | ↓〉 read P±(t) = 1

2
∫
|ψ±(x, t)|2 dx. The

maximal spin-motion entanglement can be associated with[58]

P+ = P− = 1/2. Applying Eqs. (1) and (2) to the Schrödinger
equation i∂ |ψ(x, t)〉/∂ t = H|ψ(x, t)〉 yields the matrix equa-
tion

i
∂

∂ t

(
ψ+

ψ−

)
= H0

(
ψ+

ψ−

)
− iα

∂

∂x

(
e−iφ ψ−
eiφ ψ+

)
+

g0

2

(
e−iθ ψ−
eiθ ψ+

)
,

α =
√

α2
D +α2

R, φ = arctan
αR

αD
, (3)

where we have taken the definitions of the SOC strength
and SOC-dependent phase as[5] α and φ for the Rashba–
Dresselhaus SOC coexistence system. In order to apply the
SOC phase-locked condition for deriving the exact solutions
of the matrix equation, we make the function transformations

ψ±(x, t) = ψ±,l(x, t)

= e∓iφ/2[u(x, t)e−i(αx+lπ/2)± v(x, t)ei(αx+lπ/2)] (4)

for l = 0,1,2, . . .. Inserting Eq. (4) into Eq. (3),
then multiplying the first line of the matrix equation by
ei(φ/2+αx+lπ/2) and multiplying the second line of the equa-
tion by e−i(φ/2+αx+lπ/2), we obtain
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i
∂

∂ t

(
u
v

)
=
(

H0−
α2

2

)( u
v

)
+

1
2

g0

(
e−i(θ−φ)[u− vei(2αx+lπ)]+ ei(θ−φ)[u+ vei(2αx+lπ)]

e−i(θ−φ)[ue−i(2αx+lπ)− v]− ei(θ−φ)[ue−i(2αx+lπ)+ v]

)
. (5)

For an arbitrary angle θ , the final term of Eq. (5) cannot be de-
coupled, so it is hard to construct an exact solution of the sys-
tem. The corresponding perturbed solution has been consid-
ered in Ref. [5] that leads to some interesting results. Here we
are interested in the formal SOC phase-locked case θ = φ =

arctan αR
αD
→ φ0 + jπ for j = 0,1,2, . . . and φ0 ∈ [0, π

2 ], which
can be realized experimentally for the fixed SOC strengths αR

and αD by selecting the proper Raman–Zeeman angle (or ori-
entation of magnetic field). In such a selection, the orientation
angle θ can take different values associated with the different
number j, because of the multivaluedness of the inverse tan-
gent function. Under the SOC phase-locked condition, equa-
tion (5) becomes the decoupled equation

i
∂

∂ t

(
u
v

)
=
[
H0(x, t)−

α2

2
+g0σz

]( u
v

)
for θ = φ , (6)

where σz is z component of the Pauli matrix. Equation (6)
is just the exactly solvable two-level model of the effective
Hamiltonian Heff = H0−α2/2+g0σz. Given Eq. (6), we find
that the integer l in state (4) becomes independent of the sym-
metry characterised by the potential in H0, due to the inde-
pendence of functions u,v on l. It is the SOC phase-lock that
makes such an independence, so the degeneracy of Eq. (4) as-
sociated with l could be SOC-dependent.

After making the new function transformations

u =
cu√

2
fu(x, t)ei(α2/2−g0)t , v =

cv√
2

fv(x, t)ei(α2/2+g0)t (7)

with cu and cv being the complex constants determined by
the normalization and initial conditions, the decoupled Eq. (6)
gives the time-dependent Schrödinger equation

i
∂ fu(v)

∂ t
= H0 fu(v)

of a driven harmonic oscillator with the exact complete solu-
tions being the orthonormal generalized coherent states[56–58]

fu(v) = fnu(v) = Rnu(v)(x, t)e
iΘnu(v) (x,t),

Θnu(v) = −
(1

2
+nu(v)

)
χ(t)+bu(v)2x+

ρ̇

2ρ
x2 + γu(v)(t),

Rnu(v) =
( √

c0√
π2nu(v)nu(v)!ρ

) 1
2
Hnu(v) [ξu(v)]e

− 1
2 ξ 2

u(v) ,

ξu(v) =

√
c0

ρ(t)
x−

bu(v)1(t)ρ(t)√
c0

, (8)

for nu,nv = 0,1,2, . . . with Rnu(v)(x, t) and Θnu(v)(x, t) being the
real functions and Hnu(v) [ξu(v)] the Hermite polynomial of the
space–time combined variable ξu(v)(x, t). In Eq. (8), the real
functions ρ(t),χ(t), γu(v)(t),bu(v)1(t), and bu(v)2(t) have the
forms[56–58]

ϕ1,2(t) = A1,2 cos(t +B1,2), ρ(t) =
√

ϕ2
1 +ϕ2

2 ,

χ(t) = arctan
(

ϕ2

ϕ1

)
,

bu(v)1(t) =
ε

ρ2(t)

[
ϕ1(t)

∫ t

0
ϕ2(τ)cos(Ωτ)dτ

−ϕ2(t)
∫ t

0
ϕ1(τ)cos(Ωτ)dτ

]
+bu(v)1(0)ϕ1(t)+bu(v)2(0)ϕ2(t),

bu(v)2(t) =
ε

ρ2(t)

[
−ϕ1(t)

∫ t

0
ϕ1(τ)cos(Ωτ)dτ

−ϕ2(t)
∫ t

0
ϕ2(τ)cos(Ωτ)dτ

]
+bu(v)2(0)ϕ1(t)−bu(v)1(0)ϕ2(t),

γu(v)(t) =
1
2

∫ t

0
[b2

u(v)1(τ)−b2
u(v)2(τ)]dτ + γu(v)(0). (9)

Here the initial constant sets Su(v) = [γu(v)(0), bu(v)1(0),
bu(v)2(0), A1,2, B1,2] are determined by the forms of the initial
states[58] which could be prepared experimentally.[7,60] Then
the solutions fu(v) = fnu(nv)[Su(v),x, t] are determined by the
sets Su(v) for fixed quantum numbers nu(v).

Applications of Eq. (7) to Eq. (4) result in new forms of
the exact complete solutions of Eq. (3) as

ψ±,lnunv(x, t) =
1√
2

e
i
2 (α

2t∓φ−lπ)[cu fnu e−i(αx+g0t)

±cv fnv ei(αx+g0t+lπ)]. (10)

In Eq. (10), the quantum numbers nu(v) and integer l are in-
dependent of the parameters in system (1). The solutions
fnu(nv)(x, t) of Eq. (8) can be the eigenstates of a harmonic
oscillator for the undriven case with ε = 0 and the gener-
alized coherent states for any driving strength,[56–58] which
lead to different forms of Eq. (10) and the corresponding
rich physics. Obviously, for any nonzero function pair fu(v)

and nonzero constants cu,cv,α,g0, the solutions ψ+,lnunv(x, t)
and ψ−,lnunv(x, t) are linearly independent, so the superpo-
sition state (2) is spin-motion entangled. It is important to
note that in Eqs. (8) and (10), fnu(nv) depends only on the
ac driving and trapping field, and is independent of the SOC,
the Raman–Zeeman parameters (or static magnetic field), and
the integer l. Therefore, we can conveniently manipulate
the motional states (10) by independently adjusting the driv-
ing and the initial constants to select the exact solutions of
Eq. (8), and by independently tuning the SOC parameters
α and Raman–Zeeman (or magnetic field) parameter g0 for
a fixed φ = θ . Applying Eq. (10) to Eq. (2) and notic-
ing ψ±,lnunv(x, t) = 〈x|ψ±,lnunv〉, we arrive at the orthonor-
mal complete set of the exact superposition states, |ψlnunv〉 =

1√
2
[|ψ+,lnunv〉|↑〉+ |ψ−,lnunv〉|↓〉].
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By making use of the orthonormalization of fnu(nv) and
Eqs. (8)–(10), the expected energy of the system reads[56,57]

Enunv(t) = i〈ψlnunv |
∂

∂ t
|ψlnunv〉

=
i
2

∫
∞

−∞

(
|cu|2 fnu

∂ fnu

∂ t
+ |cv|2 fnv

∂ fnv

∂ t

)
dx− α2

2
.

Any term of the above integral has been calculated carefully
in Refs. [56,57]. Application of the calculated result leads to

Enunv(t)

= −α2

2
− 1

2

∫
∞

−∞

(
|cu|2Θ̇nuR2

nu + |cv|2Θ̇nv R2
nv

)
dx

=
(1

2
+nu

) |cu|2

2
+
(1

2
+nv

) |cv|2

2
+

ε

2
(xu + xv)cos(Ω t)

+
1
4

[
|cu|2(x2

u + p2
u)+ |cv|2(x2

v + p2
v)
]
− α2

2
. (11)

Here we have used the expressions xu(v) =
∫

R2
nu(v)

(x, t)xdx
and pu(v) = ẋu(v) in which both can be corresponding to the
classical coordinates and momenta for the generalized coher-
ent states fnu(v)(x, t) of a harmonic oscillator,[56,57] while they
vanish for any time-independent eigenstate of a harmonic os-
cillator with ε = 0 and the normalization constants obeying
|cu|= |cv|= 1. The energy is a summation of the quantum part
Eq =

1
2 (

1
2 +nu)|cu|2+ 1

2 (
1
2 +nv)|cv|2 and the other part of con-

tinuous evolution in time. When the ac driving is switched off,
the energy Enunv(t) becomes time-independent. The ground
state is defined as the state with the lowest Eq for the nonzero
constants cu(v). Thus the energy of ground states is the in-
stantaneous lowest one for a set of given parameters and ini-
tial conditions. It can be time-dependent or time-independent,
depending on whether the driving vanishing. It is interesting
to see that the states of Eq. (10) depend on the integer l but
the energy of Eq. (11) is independent of l. Therefore, for
a set of fixed quantum numbers nu,nv, different integer l la-
bels different degenerate states of Eq. (2). Differing from the
usual relation between the degeneracy and symmetry in quan-
tum mechanics, the degeneracy described by the integer l is
independent of the symmetry of H0 such that it is a symmetry-
independent quantum degeneracy. In the 2D case of Ref. [65],
the symmetry-independent degeneracy may mean the topolog-
ical degeneracy.

Given Eqs. (10) and (8), the wavepackets of probability
densities are described by the squared norms

|ψ±,lnunv(x, t)|
2 =

1
2

(
|cu|2R2

nu + |cv|2R2
nv

)
±Duv,

Duv(x, t) = |cucv|RnuRnv

× cos[Θnu −Θnv −2(αx+g0t)− lπ−φ
′] (12)

of the motional state functions, where constant φ ′ is the phase
difference, φ ′ = argcv− argcu. The term Duv(x, t) describes

the phase coherence and signs “±” imply different coherent
effects for the different motional states. The phase coher-
ence is protected by the SOC, since for arbitrary Θnu(x, t) and
Θnv(x, t), the space dependence of coherence-dependent func-
tion Duv(x, t) can be kept at all time only for the nonzero
SOC strength α . We can identify the phase coherence as
the heart for controlling quantum wavepackets described by
Eq. (12). The orthonormalization of Eq. (8) means that the
probabilities of the particle being in spin states | ↑〉 and | ↓〉
obey P+,lnunv(t) + P−,lnunv(t) =

1
2
∫
(|cu|2R2

nu + |cv|2R2
nv)dx =

1
2 (|cu|2 + |cv|2) = 1, which confines the normalization con-
stants cu,cv. The maximal spin-motion entanglement[58] with
P+ = P− = 1/2 implies |cu| = |cv| = 1. Therefore, in such a
case, the probabilities of the particle occupying spin states |↑〉
and |↓〉 become

P±(t) =
1
2

∫
|ψ±(x, t)|2 dx =

1
2

[
1±

∫
Duv(x, t)dx

]
.

Given cu, cv, nu, and nv, for a fixed l, equation (12) contains
two different wavepackets distinguished by ±Duv(x, t), while
for a fixed sign of “±”, equation (12) also contains only a
pair of different wavepackets |ψ±,lnunv |2 with even l or odd
l, respectively. Clearly, equation (12) shows |ψ+,lnunv |2 =

|ψ−,l′nunv |2 with l and l′ possessing different odevity. There-
fore, equations (10) and (2) mean that |ψlnunv〉 and |ψl′nunv〉
are two different degenerate states associated with some in-
terchanges of wavepackets. The wavepackets described by
|ψ+,lnunv |2 and |ψ−,lnunv |2 may be spatially separated and be
centred at different positions, x±,u(v) =

∫
|ψ±,lnunv |2xdx. This

means that equation (2) is a complete set of Schrödinger kitten
states[59] which includes the degenerate ground states with the
lowest quantum level Eq =

1
2 (1+nu|cu|2 +nv|cv|2) and differ-

ent initial constants.
Let us extend the definition of a cat state at a selected

time (e.g., the initial time) with the macroscopically separated
wavepackets[7] to the definition of a “kitten state” with smaller
maximal distance between two wavepackets,[59] where |↑〉 and
| ↓〉 refer to the internal states of an atom that has not and has
radioactively decayed, while the right and left wavepackets re-
fer to the live (,) and dead (/) states of a kitten. We can
formally write a ground state of Eq. (2) as a Schrödinger kit-
ten state of even l as[7] |ψlnunv〉 = 1√

2
(|,〉| ↑〉+ |/〉| ↓〉) with

the right and left wavepackets being described by the squared
norms |〈x|,〉|2 and |〈x|/〉|2 which are associated with the in-
ternal states | ↑〉 and | ↓〉, respectively. Then its degenerate
ground state of odd l′ reads |ψl′nunv〉 =

1√
2
(|/〉| ↑〉+ |,〉| ↓〉)

with exchange of wavepacket positions or equivalent spin flip,
which is called a “ill kitten” transferring from near-dead to
alive when the atom has radioactively decayed. For a group
of fixed quantum numbers nu, nv and integer l we will demon-
strate that the positions of the wavepacket pair |ψ+,lnunv(x, t)|2
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and |ψ−,lnunv(x, t)|2 can be exchanged by applying the ac field.
The name “Schrödinger kitten” of the superposition states is
determined only by the spatially separated norms of the mo-
tional states at a selected time such that it can be related to
many kitten states distinguished by the different phases. The
degeneracy of the ground kitten states is not based on simple
symmetry consideration and the analogues of the 2D case is a
topological degeneracy[65] thereby. Particularly, for some val-
ues of SOC strength, the motional states of the kittens and ill
kittens may exist zero-density nodes. These nodes are associ-
ated with the singular points of the phase gradients at which
the phases of the states occur jumps.[66]

3. Exchanging density wavepackets of degener-
ate ground states
Generally, equations (11) and (12) imply that the ex-

pected energy and the probability densities are periodic func-
tions of time. However, in Eq. (10), the phases argψ±,lnunv of
ψ±,lnunv(x, t) are obviously different for signs “+” and “−”,
and are aperiodic in time. The periodically varying norms
and the aperiodically varying phases lead to that transitions
between the degenerate ground states can be manipulated by
exchanging positions of the density wavepackets. Let us take
a simple example with |cu|= |cv|= 1,nu = nv = l = 0 and the
initial constant set Su(v) = [γu(v)(0) = bu(v)2(0) = 0,bu1(0) =
−bv1(0) = b0,A1 = A2 = A,B1 = 0,B2 = −π/2] to demon-
strate the interchange property of the Schrödinger kittens.
These constants make Eqs. (9) and (10) have the explicit form,
as in Eqs. (A1) and (A2) of Appendix A, where the periodic
norms and aperiodic phases are exhibited. Applying Eqs. (A1)
and (A2) to Eq. (12), we display the spatiotemporal evolu-
tions of the density wavepackets in Fig. 1 for the parame-
ters α = 0.2,φ ′ = 3,ε = 0.2,Ω = 2,g0 = 0.1, and b0 = 1.
We can see the complicated spatiotemporal evolutions and the
time periodicity as shown in Fig. 1(a) with the expectation
values of the wavepackets’ coordinates given by Eq. (12) as
x±(t) =

∫
|ψ±,lnunv(x, t)|2xdx. Applying Eqs. (A1) and (A2)

yields x+(t) = −x−(t), namely, the spin-up wavepacket and
spin-down wavepacket move in the opposite directions. In
Fig. 1(b) we show the ill kitten state at time t = 5.0(ω−1)

and kitten state at time t = 13.8(ω−1) with interchange of the
wavepacket positions. In both cases, the two separated peaks
have a distance in order of Lh =

√
h̄/(meω). In the time in-

terval t ∈ (5.0,13.8), there exist many pairs of wavepackets
with different shapes. The same wavepackets will periodically
appear and the corresponding states may change their phases
aperiodically. Thus the interchanges of wavepackets make the
norms and phases of ψ±,000(x, t) to change their spatiotempo-
ral distributions asynchronously that results in the change of
the spin-motion entangled state.

Note that at any moment t0, the probabilities P±(t0) =∫
|ψ±,000(x, t0)|2 dx of the particle being in different spin states

are equal to the areas between the wavepacket curves and the x
axis. The spatial distributions in Fig. 1(b) mean that the sym-
metrical kitten and ill kitten states have the same probability
P±(5.0) = P±(13.8) = 1/2. Obviously, for some time in in-
terval (5,13.8), figure 1(a) has asymmetrical probability dis-
tributions corresponding to P+� P− or P−� P+. The result
means more possibilities of the spin manipulation by switch-
ing off the ac field at different time.
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Fig. 1. Spatiotemporal evolutions of the deformed wavepackets described by
the probability density |ψ±,000(x, t)|2 of Eq. (12) with complicatedly oscillat-
ing positions which are described by the time-varying wave-peaks. Hereafter,
the blue color and solid curves are associated with sign “+”, the red color
and dashed curves correspond to sign “−”, and the right and left wavepackets
|〈x|,〉|2 and |〈x|/〉|2 in a plot are always labeled by the live , and dead /,
respectively. When the packet |ψ+,000(x, t)|2 is localized on the right or left
side, we call the superposition state the kitten state or ill kitten state. All the
quantities plotted in the figures of this paper are dimensionless.

In order to produce regular oscillations of the wavepack-
ets for exchanging their positions at given time, we can apply a
π/2 pulse of Ramsey type experiment to rotate the state vector
(2) to the form[67] |ψ ′lnunv

〉= 1√
2
[|ψ ′+,lnunv

〉|↑〉+ |ψ ′−,lnunv
〉|↓〉]

with |ψ ′±,lnunv
〉 = 1√

2
(|ψ+,lnunv〉± |ψ−,lnunv〉. Thus the proba-

bility amplitudes of the particle being in spin states |↑〉 and |↓〉
become the new wave functions

ψ
′
±,lnunv

(x, t) =
1√
2
[ψ+,lnunv(x, t)±ψ−,lnunv(x, t)]. (13)
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Then applications of Eq. (10) with cu = cv = 1 to Eq. (13)
give explicit forms of the wave functions [see Eq. (B1) in
Appendix B]. The corresponding wavepackets are described
by the probability densities which obey the normalization re-
quirement |ψ ′+,lnunv

|2 + |ψ ′−,lnunv
|2 = R2

nu +R2
nv . A careful cal-

culation can prove that this rotation keeps the expectation
value of energy (11) and the independence of energy on the
parameters φ and l. Therefore, |ψ ′lnunv

〉 and |ψ ′l′nunv
〉 are also

two degenerate states with different |ψ ′±,lnunv
〉 and |ψ ′±,l′nunv

〉,
while for a fixed l the Raman–Zeeman (or magnetic field)
angle transformation from θ = φ to θ = φ + π causes tran-
sition between two degenerate states with exchange between
ψ ′+,lnunv

(x, t) and ψ ′−,lnunv
(x, t) (see Appendix B), meaning the

spin flip. We are interested in the exact instantaneous ground
state ψ ′±,000(x, t) with nu = nv = l = 0. Adopting the param-
eters α = 0.1,g0 = 0.5,b0 = 1,ε = 0.2,Ω = 2, and φ = 0.1,
from the norms of Eq. (13) [with explicit forms of Eq. (B2)
in Appendix B] we plot the spatiotemporal evolutions of the
wavepackets |ψ ′±,000(x, t)|2 in Fig. 2(a), where the wavepack-
ets approximately keep shape and perform regularly 1D oscil-
lations with expected coordinates x′±(t) =

∫
|ψ ′±,000(x, t)|2xdx

obeying x′+(t) =−x′−(t). The governing initial state is a kitten
state and the ill kitten state appears at t = 2.6, . . ., as shown
in Fig. 2(b). In the time internal t ∈ [ti = 0, tf = 2.6], the in-
terchange of wavepackets |〈x|,〉|2 and |〈x|/〉|2 leads to that
the two motional states exchange norms with each other and
accumulate different phases, as formulated in the time evo-
lution Eqs. (14) and (15). We also find numerically that the
increase of the initial constant b0 can lengthen the maximal
distance between wavepackets, while the latter can be selected
by preparing the initial wavepackets.[7,60]

The degenerate ground states can be manipulated by
a field-driven interchange of wavepackets at an appropriate
time interval t ∈ [ti, tf], by using the time-evolution operator
U(tf, ti) = e−iH(tf−ti) to act on the initial superposition state
|ψ ′lnunv

(ti)〉 which approximately fits a stationary ground state
|ψlnunv〉 of Eq. (2) for a undriven system. We switch on the
ac electric field in the original Hamiltonian (1) at ti and switch
it off at tf, creating a quantum transition between the initial
and final degenerate stationary states with the desired occupy-
ing probabilities of the different spin states. The phase differ-
ence argψ ′−,lnunv

− argψ ′+,lnunv
of ψ ′±,lnunv

(x, t) is an aperiodic
function of time, and the accumulated phase difference from
the initial time ti to the final time tf can be nonzero that leads
to interchanges of the wavepackets with final state |ψ ′lnunv

(tf)〉
completely differing from the initial states. Such controlled
wavepacket interchanges can be performed locally for any par-
ticle in an array of quantum-well trapped particles.[9] Accord-
ing to Eq. (B2), we also can adjust the Raman–Zeeman (or
magnetic field) angle from θ = φ = 0.1 to θ = φ = 0.1+ π

to produce the wavepacket exchange between |ψ ′+,000(x, t)|2

and |ψ ′−,000(x, t)|2, which does not show here. For an ar-
ray of trapped charged particles, such magnetically controlling

wavepacket interchanges can be performed simultaneously in
a wide range.[5]
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Fig. 2. Spatiotemporal evolutions of the wavepackets |ψ ′±,000(x, t)|2 from
Eq. (13) with regular oscillations. Starting with a kitten state, the wavepacket
pair approximately keeps their shapes and periodically oscillates. In an os-
cillating period, the wavepackets can go through many kitten states similar to
the initial state in Fig. 1(b) and ill kitten states similar to the state at t = 2.6
in Fig. 2(b) with different distances between the wavepackets, which can be
extracted by the ac field manipulations.

The above interchange property can be confirmed by
the non-commutativity of the exchange operators. Selecting
the initial state as one of the degenerate ground states,[7,67]

|ψ ′000(ti)〉 =
1√
2
(|,〉| ↑〉 + |/〉| ↓〉), and let tf j be the j-th

exchange time, from Eq. (13) we have the time evolution
equation to another degenerate ground state, |ψ ′000(tf j)〉 =
U(tf j, ti) 1√

2
(|,〉| ↑〉+ |/〉| ↓〉) = 1√

2
[ei[argψ ′+000(tf j)]|/〉| ↑〉+

ei[argψ ′−000(tf j)]|,〉| ↓〉] for any odd integer j. The matrix form
of the time evolution equation reads

|ψ ′000(tf j)〉 = U(tf j, ti)
1√
2

(
|,〉
|/〉

)
=

1√
2

(
ei[argψ ′+000(tf j)]|/〉
ei[argψ ′−000(tf j)]|,〉

)
,

U(tf j, ti) =

(
0 ei[argψ ′+000(tf j)]

ei[argψ ′−000(tf j)] 0

)
, (14)
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where U(tf j, ti) is the unitary exchange operator. At time tf j′

with any even integer j′, the wavepackets exchange even times
and return to the initial positions, so the wave functions do not
change their norms but change the phases. Thus the time evo-
lution equation becomes

|ψ ′000(tf j′)〉 = U(tf j′ , ti)
1√
2

(
|,〉
|/〉

)

=
1√
2

(
ei[argψ ′+000(tf j′ )]|,〉
ei[argψ ′−000(tf j′ )]|/〉

)
,

U(tf j′ , ti) =

(
ei[argψ ′+000(tf j′ )] 0

0 ei[argψ ′−000(tf j′ )]

)
. (15)

Clearly, non-commutativity of the exchange operators
U(tf j, ti) and U(tf j′ , ti) can be demonstrated by the calculation

U(tf j, ti)U(tf j′ , ti) =

(
0 ei[argψ ′+000(tf j)+argψ ′−000(tf j′ )]

ei[argψ ′−000(tf j)+argψ ′+000(tf j′ )] 0

)

6= U(tf j′ , ti)U(tf j, ti) =

(
0 ei[argψ ′+000(tf j)+argψ ′+000(tf j′ )]

ei[argψ ′−000(tf j)+argψ ′−000(tf j′ )] 0

)
, (16)

because of the nonzero accumulated phase difference,
argψ ′+000(tf j′)−argψ ′−000(tf j′) 6= 0. It is the different accumu-
lated phases that make the non-Abelian-like interchange,[65,68]

namely, any one of the above wavepacket-exchanged states
|ψ ′000(tf j)〉 and |ψ ′000(tf j′)〉 behaving as quasiparticles cannot
be expressed as a product of the initial state |ψ ′000(ti)〉 and a
phase factor. The unitary exchange operators are related to the
electric field that drives the operations in Eqs. (14) and (15).
That is, one can initially turn on an electric field to induce
time evolutions of the system, then turn it off at time tf j or tf j′

to complete the exchange operation.

4. Coherently controlling transitions between
stationary ground states
Now we seek the stationary ground states of undriven

case and focus on the transparently coherent control of tran-
sitions between them by using an ac driving to perform ex-
change operations of the wavepackets. Noticing the phases
in stationary states fnu(v) of Eq. (8), Θnu(v) = −(

1
2 + nu(v))t,

from Eq. (10) we know that the stationary ground state with
nu = nv = 0 cannot exist for a nonzero g0, because of the
time-dependent phase factors e±ig0t in Eq. (10). However, we
can see that under the modulation resonance condition[10,11]

g0 = 1
2 (nv− nu)(h̄ω), the time-dependent phases of the two

terms in the square brackets of Eq. (10) become the same
form − 1

2 (1 + nv + nu)t. Thus equation (10) becomes a set
of stationary states with constant energies Enunv and time-
independent norms. The related superposition states of Eq. (2)
obey the stationary Schrödinger equation H(x)ε=0|ψlnunv〉 =
Enunv |ψlnunv〉. In fact, in the case ε = 0, the initial con-
stant set Su(v) = [γu(v)(0),bu(v)1(0),bu(v)2(0),A1,A2,B1,B2] =

[0,0,0,A,A,0,−π/2] makes the functions fnu(v) of Eq. (8) the
usual eigenstates of a harmonic oscillator. Inserting fnu(v)

into Eq. (10) and taking a minimal resonance Raman–Zeeman
(or magnetic field) strength with fractional resonance g0 =

(nv−nu)/2 = 1/2 produce a set of stationary Schrödinger kit-
ten states of Eq. (2), which contains the degenerate ground
states |ψl01(t)〉 with the motional states

ψ±,l01 =
e

i
2 (α

2t−2t∓φ−lπ−2αx)− 1
2 x2

π
1
4
√

2
×(cu± cv

√
2xei2αx+ilπ) (17)

for nu = 0, nv = 1, l = even or odd number, and the normal-
ization constants obeying |cu| = |cv| = 1. The corresponding
probability densities of the particle being in spin states |↑〉 and
| ↓〉 are time-independent |ψ±,l01(x)|2. In the case of cu = 1
and cv = eiφ ′ , the interesting phase of Eq. (17) is analyzed
in Appendix C, where the time-independent phase gradients
are calculated, which contain some singular points for the spe-
cial values of the parameters α and φ ′. The phase gradient is
proportional to the velocity field, and the singular points are
the analogues of the 2D vortex cores[66] at which the densi-
ties vanish and phases hop for the motional states. The de-
generate first excitation state reads |ψl12〉 with nu = 1,nv = 2
and different l values. Noticing xu(v) = 0 for any eigenstate
fu(v) of a harmonic oscillator, the eigenenergies of the sta-
tionary superposition states are given by Eq. (11) as Enunv =
1
2 (1+nu|cu|2+nv|cv|2)− α2

2 . In the case of the maximal spin-
motion entanglement[58] with |cu| = |cv| = 1, the lowest two
levels read E01 = (1− 1

2 α2)(h̄ω) and E12 = (2− 1
2 α2)(h̄ω).

The energy gap ∆E = E12−E01 = 1(h̄ω) is relatively great
compared to the perturbation level difference (e.g., see Ref. [5]
for a quantum-dot-electron system). The large energy gap is
important for performing the quantum logic operation. For in-
stance, when the Raman–Zeeman (or magnetic field) strength
is slightly disturbed at a moment, the produced corrected en-
ergy cannot cause transition from the ground states to the ex-
citation states.

In many applications based on a trapped ion system
without SOC, the ion can be cooled and initialized ex-
perimentally to a nearly pure and unique motional ground
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state.[6,69,70] For the considered SOC system, although the de-
generate ground states are not unique, we can initially pre-
pare one of the ground states. The initial constant sets Su(v) =

[γu(v)(0)],bu(v)1(0),bu(v)2(0),A1,2,B1,2] then are determined by
the forms of the initial ground states.[58] It is easy to create an
usual quantum transition from one of ground states |ψl01(t)〉 of
different l to any excitation state with g0 = (nv−nu)/2 > 1/2
by using a laser with resonance frequency to match the level
difference ∆E. In the transition process, unclear spatiotempo-
ral evolutions of the wavepackets are quantum-mechanically
allowable. In principle, the usual quantum transition with en-
ergy exchange is equivalent to that with state transfer. How-
ever, to realize a transition among the different ground states
without level difference, we have to consider how to con-
trol time evolutions of the degenerate states in a transition
process with the same initial and final energy, in especial
to control the time evolutions of the observable probability-
density wavepackets.[7,60] Considering a simple example with
α = 0.1, cu = 1,cv = eiφ ′ = ei3, from Eq. (17) we plot the
wavepackets |ψ±,001(x)|2 and |ψ±,101(x)|2, as shown in Fig. 3.
According to the definition of a kitten state, figure 3(a) with
l = 0 is associated with an ill kitten state and figure 3(b) with
l = 1 corresponds to its degenerate kitten state. In Fig. 3 we
also show that for a fixed SOC strength the density wavepack-
ets obey |ψ+,001|2 = |ψ−,101|2 and |ψ−,001|2 = |ψ+,101|2, and
the former has zero density node x+ = 1/

√
2. This means that

the interchanges between the wavepackets with l = 0 and those
with l = 1 imply quantum transitions between the degenerate
stationary ground states.
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Fig. 3. Spatial distributions of the wavepackets associated with two sta-
tionary degenerate ground states for φ ′ = 3,α = 0.1: (a) wavepackets
associated with an ill kitten state with l = 0; (b) wavepackets corre-
sponding to a kitten state with l = 1. Quantum transition between these
degenerate ground states can be manipulated via ac-driven interchange
of the wavepackets.
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Fig. 4. (a) Time evolutions of the expected energies with the solid curve
being associated with the same parameters as those of Fig. 2(a) and the
dashed curve with the same parameters except for α = 1. (b) Time
evolutions of the expected energies after increasing driving frequency
from Ω = 2 to Ω = 5. In the insets we show that the expected energy
E00(t) for α = 0.1 approximately equals the stationary state energy E01
indicated by the horizontal line, and the larger Ω value corresponds to
smaller deviation from E01. The dashed curves in both figures imply the
similar conclusion for α = 1.

As shown in Fig. 2(a), in an oscillating period of the
wavepackets, the particle can experience many kitten and ill
kitten states with different heights, widths, and distances be-
tween the corresponding wavepackets. Therefore, starting
with any stationary ground state of motional states Eq. (17),
after a π/2 rotation we can switch on the ac field to prepare
the initial state |ψ ′000(ti)〉 of Eq. (13) with norms of motional
states being similar to those in Fig. 2(a), then switch off the
driving at a suitable time tf to transfer the state to |ψ ′000(tf)〉
with norms of motional states being similar to those of Eq. (17)
for different constants cu(v). For instance, starting with the sta-
tionary state with norms approximating to Fig. 3(b), we switch
on the ac field at ti = 0 to prepare the initial state of Fig. 2(b),
then switch off the driving at tf = 2.6ω−1, the system evolves
to a final state of Fig. 2(b) at t = 2.6, which approaches to
the state of Fig. 3(a). Consequently, the undriven particle will
spontaneously transit to the stationary ground state with norms
of Fig. 3(a). Although the accumulated phases in the driv-
ing process can be fitted by the phases of complex numbers
cu and cv in Eq. (17), the wavepacket interchanges are only
related to the wavepackets’ coordinates, and the latter are de-
termined by the norms of the motional wave functions. Par-
ticularly, such operations depend on a known final state for a
given initial state, and the other states in the interchange pro-
cesses can be ignored. The corresponding expectation values
of energy are plotted in Fig. 4, where we show that in the pro-
cess of wavepacket interchanges, for a sufficiently large driv-
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ing frequency Ω the expected energy is approximately equal
to and slight greater than the stationary state one with devia-
tion being much less than the energy gap ∆E = 1(h̄ω). Fur-
thermore, in the limit of a weak ac electric field and under
the SOC-dependent phase-locked condition, the transition rate
between the lowest two spin–orbit states with small energy
gap vanishes.[5] Thus, the transitions between the degenerate
ground states are robust and insensitive to the perturbations
from the exchange operations. Such manipulations may be
useful for controlling the degenerate ground states to perform
the quantum logical operations, when the system is extend to
an array of weakly coupled single-particle quantum wells.

5. Discussion and conclusion
We have investigated a single spin–orbit coupled particle

subjected to an ac external field. Under the SOC-dependent
phase-locked condition, we derive a set of exact spin-motion
entangled Schrödinger kitten states which contains some de-
generate ground states with oscillating density wavepackets.
In the undriven case, the pairs of stationary wavepackets of
the degenerate ground states are constructed by using a modu-
lation resonance with the Raman–Zeeman (or magnetic field)
strength fitting the trap frequency. The exchange operations
with one wavepacket going through another are shown by us-
ing the ac driving, which shift the system between different
ground states. The expected energy consisting of a continuous
part and a quantum one is computed, and the energy devia-
tion caused by the exchange operations is much less than the
quantum gap. The ground states of Eq. (10) depend on the
integer l but the energy of Eq. (11) is independent of l such
that the degeneracy ground states can be created by manipu-
lating the density wavepackets distinguished by the different l.
Such degeneracy is not based on simple symmetry considera-
tion, because of the symmetry-independent l. The symmetry-
independent degeneracy ground states result in the robust spin-
motion entanglement.

The exact results can be justified with the current ex-
perimental capability for a nanowire quantum-dot-electron
system[3] and can be further extended to the system of trapped
ions. Treating the exact solutions as the leading-order ones,
the obtained results also may be directly extended to an ar-
ray of particles separated from each other by different quan-
tum wells with weak neighboring coupling as perturbation,
such as the coupled magnetic atomic chain with SOC on a
superconductor[72] and the spin–orbit coupled single atoms
initially prepared in Mott insulating state[71] which are held
in an optical lattice with a single atom at each site.[61,62]

In the latter case, we can lower the lattice depth to trans-
form the system from the tight-binding regime into the weak
Lamb–Dicke regime[6,67] with harmonic trap at each well
and with weak coupling between the neighbor wells. It is
worth noting that the confined few-body system with control-
lable numbers of atoms within a given well has been real-
ized experimentally.[61,73] The similar array of charged par-
ticles also can be the weakly coupled single-electron quan-
tum dots with SOC. The exchange operation of wavepack-
ets can be performed individually for any one of the single
particles,[9] while the operation time for different particles can
be selected to change the state of the system in a way that
depends only on the order of the exchanges. These results
show the decoherence-averse effect of SOC and the transpar-
ently coherent control of qubits in a 1D particle system, which
could be fundamental important for encoding the spin–orbit
qubits via the robust spin-motion entangled degenerate ground
states.

Appendix A: Explicit forms of the motional
states used in Fig. 1

When we take the parameters |cu|= |cv|= 1,nu = nv = 0
and the initial constant set Su(v) = [γu(v)(0) = bu(v)2(0) = 0,
bu1(0) = −bv1(0) = b0, A1 = A2 = A, B1 = 0, B2 = −π/2],
the auxiliary functions in Eq. (9) become

ϕ1(t) = Acos t, ϕ2(t) = Asin t, ρ = c0 = A, χ = t, ξu(v) = x−bu(v)1(t),

bu1(t) = ε

[
cos t

∫ t

0
sinτ cos(Ωτ)dτ− sin t

∫ t

0
cosτ cos(Ωτ)dτ

]
+b0 cos t = bv1(t)+2b0 cos t,

bu2(t) = ε

[
− cos t

∫ t

0
cosτ cos(Ωτ)dτ− sin t

∫ t

0
sinτ cos(Ωτ)dτ

]
−b0 sin t = bv2(t)−2b0 sin t,

R0u(v)(x, t) = π
−1/4 e−ξ 2

u(v)/2
, Θ0u(v)(x, t) =−

1
2

t +bu(v)2x+
1
2

∫ t

0
[b2

u(v)1(τ)−b2
u(v)2(τ)]dτ, (A1)

where the integrals can be easily completed, the functions R0u(v) = R0(Su(v),x, t), Θ0u(v) = Θ0(Su(v),x, t) with different constant
set Su(v) mean the different functions fu(v)(x, t) of Eq. (10). Applying these constants and functions to Eq. (10), we obtain the
explicit solutions

ψ±,l00(Su(v),x, t) =
1√
2
√

π
e

i
2 [α

2t∓φ−lπ−2(αx+g0t)+2Θ0u]
[

e−
1
2 ξ 2

u ± e−
1
2 ξ 2

v +i(2αx+2g0t+lπ+Θ0v−Θ0u+φ ′)
]
,
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|ψ±,l00(Su(v),x, t)|2 =
1

2
√

π
[(e−ξ 2

u + e−ξ 2
v )± e−

1
2 (ξ

2
u +ξ 2

v ) cos(2αx+2g0t + lπ +Θ0v−Θ0u +φ
′)],

arg[ψ±,l00(Su(v),x, t)] = arctan
[ ±e−

1
2 ξ 2

v sin(2αx+2g0t + lπ +Θ0v−Θ0u +φ ′)

e−
1
2 ξ 2

u ± e−
1
2 ξ 2

v cos(2αx+2g0t + lπ +Θ0v−Θ0u +φ ′)

]
+

1
2
[α2t∓φ − lπ−2(αx+g0t)+2Θ0u]. (A2)

Here phase difference φ ′ between cv and cu and the constant set Su(v) are adjusted by the initial conditions determining the
wavepackets. The square norms |ψ±,l00|2 of Eq. (A2) are periodic functions of time, while the phases argψ+,l00 and argψ−,l00

are obviously different and aperiodic in time for even l and odd l, respectively.

Appendix B: Explicit forms of the motional states used in Fig. 2
Combining Eq. (13) with Eq. (10) for cu = cv = 1 and φ ′ = 0, we arrive at the explicit solutions after the rotation of a π/2

pulse

ψ
′
+,lnunv

(x, t) = e
i
2 (α

2t−lπ)
[

fnu e−i(αx+g0t) cos
φ

2
− i fnv e i(αx+g0t+lπ) sin

φ

2

]
,

ψ
′
−,lnunv

(x, t) = e
i
2 (α

2t−lπ)
[
− i fnu e−i(αx+g0t) sin

φ

2
+ fnv e i(αx+g0t+lπ) cos

φ

2

]
. (B1)

The corresponding wavepackets are described by the probability densities

|ψ ′+,lnunv
(x, t)|2 =

[
R2

nu(x, t)cos2 φ

2
+R2

nv(x, t)sin2 φ

2

]
+ sinφ RnuRnv sin[Θnu −Θnv −2(αx+g0t)− lπ],

|ψ ′−,lnunv
(x, t)|2 =

[
R2

nu(x, t)sin2 φ

2
+R2

nv(x, t)cos2 φ

2

]
− sinφ RnuRnv sin[Θnu −Θnv −2(αx+g0t)− lπ], (B2)

which obey the normalization requirement |ψ ′+,lnunv
|2 + |ψ ′−,lnunv

|2 = R2
nu + R2

nv . Similar to Eq. (A2), the phase difference
argψ ′−,lnunv

− argψ ′+,lnunv
of ψ ′±,lnunv

(x, t) is also an aperiodic function of time for any set of quantum numbers, and the ac-
cumulated phase difference from the initial time ti to the final time tf can be nonzero that leads to non-Abelian-like interchanges
of the wavepackets as quasiparticles.

Appendix C: Novel phases of the stationary motional states in Eq. (17)
Writing the phases of Eq. (17) as

Φ± = arg[ψ±,l01(x, t)] =
1
2
(α2t−2t∓φ − lπ)−αx+ arctan

[ ±√2xsin(2αx+φ ′+ lπ)
1±
√

2xcos(2αx+φ ′+ lπ)

]
, (C1)

the accumulated phase from ti to tf reads (α2− 2)(tf− ti), which is the same for Φ± of the stationary states such that the accu-
mulated phase difference vanishes for the stationary states. The time-independent phase gradients Φ±,x contain some singular
points for some values of the parameters α and φ ′. These singular points are the analogues of the 2D vortex cores at which the
densities vanish and phases hop for the motional states. The phase gradients are derived from Eq. (C1) as

Φ±,x =
4αx2±

√
2[2αxcos(2αx+φ ′+ lπ)+ sin(2αx+φ ′+ lπ)]
1+2x2±2

√
2 xcos(2αx+φ ′+ lπ)

−α. (C2)

The zero points of the denominator imply that for α =
1√
2
(nπ − φ ′) > 0 with n = ±1,±2, . . ., the singular points of

Φ±,x(x) are x± = ±1/
√

2, respectively. The required SOC
strength is adjusted by the phase difference φ ′, and a usual
zero phase difference corresponds to stronger SOC. To see
the 1D novel property of the degenerate ground states, we can
employ the analytic prolongation (see, e.g. Ref. [73]) on the
complex plane, Φ±,x(z) for z = x+ iy, to construct the circu-

lation integrals
∮

Γ±Φ±,x(z)dz = 2πi× resΦ±,x(z±) = 2Nπ for

the topological charges N = 0,±1,±2, . . .. Here Γ± are closed

trajectories enclosing the poles z±= x± and the res denotes the

residues at the poles. Various topologically equivalent closed

trajectories are allowable for any one of the above circulation

integral.
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